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Summary. The reaction of phenylchlorocarbene with 3-ethyl-1-azabicyclo[1.1.0]-
butane (3) in pentane at 25 °C occurs with a rate constant of 3.2 x 108 M's™!, most
likely via ylide 4. Copyright © 1996 Elsevier Science Ltd

Reactions of carbenes with the strained single bonds of (alkyl)bicyclobutanes generally afford ring-

opened pentadienes; eq. (1).! Several mechanisms have been offered to account for the bond reorganization
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attending this family of reactions, including those proceeding via diradical,” or zwitterionic intermediates.

In contrast, Jones et al. proposed a concerted, 2-bond “pluck” mechanism in which the carbene reacts
simultaneously with the central and a side bond of the bicyclobutane.la In the related reaction of

phenyichlorocarbene (PhCCl) with [1.1.1]propellane, eq. (2), both a biradical and a concerted mechanism
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Recently, Mloston et al.’ reported that the reactions of dichlorocarbene with 3-substituted 1-azabicyclo-

were considered.’

[1.1.0]butanes gave ring-opened products analogous to those found in the bicyclobutane reactions. Carbenes

™9 so that, in addition to the

are known to react very rapidly with amines via the formation of N-ylides
mechanisms proffered above for the carbene/bicyclobutane reactions, the intervention of an azabicyclobutane

ylide, 1, seems most apposite in the dichlorocarbene/azabicyclobutane reaction.® ¢f,, eq. (3).
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Here, we report on the reaction of PhCCl with 3-ethyl-1-azabicyclo[1.1.0]butane (3. In particular, the

rate constant for this reaction, as determined by laser flash photolysis (LFP), exceeds even that found for the
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reaction of PhCCl with the highly strained [1.1.1]propellane,’ eq. (2), and is consistent with an ylide-mediated
ring opening.

Photolysis of ~30 mM phenylchlorodiazirine'' with 100 mg (1.2 mmol) of 3 in 10 ml of pentane using a
Rayonet reactor (A = 350 nm, 5 min, 25 °C), followed by an aqueous wash (2 x 10 ml of water), drying
(MgSO0s) and flash chromatography on silica gel (eluents: pentane, then ether) afforded as the sole major

product 120 mg (53%) of N-2-ethyl-3-propenylbenzamide, 6; cf., Scheme 1.
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The formation of 6 from 3 and PhCCl is most readily rationalized by the addition of PhCCI to 3 at
nitrogen, affording ylide 4. Ring opening of the latter gives the phenylchloroimine, 5, which readily
hydrolyzes to benzamide 6.'> Control experiments indicated the absence of a dark reaction between 3 and
phenylchlorodiazirine after 3 h at 25 °C.

The rate constant for the reaction of PhCCl and 3 was determined by LFP. To avoid potential
interference from product or ylide absorbances in the 300-350 nm region we employed the pyridine ylide
methodo]ogy,13 in which a varying concentration of substrate 3 competed with a fixed concentration (1 mM)
of pyridine in pentane for a flux of PhCCl. A pentane solution of phenylchlorodiazirine [A = 1] was irradiated
with a 14 ns, ~ 50 mJ pulse of 351 nm light from a xenon fluoride excimer laser, yielding PhCCl which
reacted either with 1 x 10 M pyridine to produce ylide 7 (Amax 480 nm'®) or with azabicyclobutane 3

(3.19x 103 -2.18 x 102 M).
Ph
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Apparent rate constants for the formation of ylide 7 as a function of [3] were measured by LFP,
affording the results shown in Figure 1. The slope of this linear correlation (r = 0.996), 3.2 x 108 M''s”, is
taken as the rate constant for the reaction of PhCCl with 3.'

The reaction of PhCCl and 3 is 5.2 times faster than the PhCCl-propellane reaction of eq. (2), for which

k=6.1x10"M's" in cyclohexane.® We suggest that the former reaction occurs via the ylide mechanism of
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Figure 1. Apparent rate constants (s') for the formation of
ylide 7 (480 nm) as a function of {3] (M) in the reaction of
PhCCl and 3 in pentane containing 1 mM pyridine at 25 °C.

Scheme 1. In comparison, ylide formation between p-CI-PhCCl and triethylamine features a comparable rate
constant, k = 7.2 x 10® M''s”, and the transient ylide can be spectroscopically detected.”® We could not
observe ylide 4 (expected at A ~ 340 nm™) during the LFP reaction of PhCCl and (up to 2.2 M 3), but this
ylide should open very rapidly to §. Indeed, the N-ylide derived from p-CI-PhCCl and N-allylaniline was also
not observed by LFP, presumably due to very fast 1,2-allylic or 2,3-sigmatropic rearrangements.”

Finally, we determined the rate constant for the reaction of PhCCl with the readily available'® 1,2,2-
trimethylbicyclo[1.1.0]butane (8) in pentane using the pyridine ylide LFP methodology. With 8 varied from
0.064 - 0.48 M, we obtained a linear correlation (r = 0.999, 6 points) of the apparent rate constants for the
formation of ylide 7 as a function of [8] which afforded a slope of 4.3 x 10° M's™!, equal to the rate constant
for the reaction of PhCCl with 8."° The attack of PhCCl on 3 is thus 74 times faster than its reaction with 8,
which can be attributed both to the availability of the ylide pathway with 3 and to steric hindrance originating
at the gem-dimethyl groups of 8.'®

In conclusion, PhCCl reacts with azabicylobutane 3 more rapidly than with either [1.1.1]propellane or
with trimethylbicyclobutane 8. Presumably, much of this kinetic advantage derives from the incursion of an
ylide-mediated reaction in the case of 3.
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See ref. 13b, pp. 97ff for a discussion of this kinetics method. We estimate the error in the rate constant
at +10%. Direct LFP monitoring of the decay of PhCCl in pentane at 316 nm while varying [3] gave
k=29x 10°M"s", in good agreement with the pyridine ylide-determined rate constant.

The “preparative” photolysis of phenylchlorodiazirine (A170 ~ 3) with 1.1 M 8 in pentane (Rayonet
reactor, 350 nm) afforded a mixture of 6 “adducts” (GC/MS parent ions at m/e 220) which, by NMR
spectroscopy, appeared to be regio- and stereoisomeric trimethyl-substituted 1-phenyl-1-chloro-1,4-
pentadienes. This reaction is notably less specific than that of CCl, and 8.'

The steric factor will be accentuated if the carbene must approach the bicyclobutane along an endo
trajectory.'*®
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